De Wikipedia, la enciclopedia libre
BMonSphere.jpg (365 × 356 píxeles; tamaño de archivo: 10 kB; tipo MIME: image/jpeg)
Este es un archivo de Wikimedia Commons, un depósito de contenido libre hospedado por la Fundación Wikimedia. Más abajo se reproduce su página de descripción con la información sobre su origen y licencia. |
Esta imagen (o todas las imágenes de este artículo o categoría) se ha subido en formato JPEG. Sin embargo, contiene información que podría almacenarse de forma más eficiente o exacta con formato PNG o SVG. Si es posible, suba una versión PNG o SVG de esta imagen sin artefactos de compresión que provenga de una fuente que no sea JPEG o a la que se le hayan eliminado los artefactos existentes. Tras hacerlo, por favor:
|
DescripciónBMonSphere.jpg | Brownian Motion on a Sphere. The generator of ths process is ½ times the Laplace-Beltrami-Operator |
Fecha |
verano de 2007 date QS:P,+2007-00-00T00:00:00Z/9,P4241,Q40720564 (blender file as of 28.06.2007) |
Fuente | read some papers (eg Price, Gareth C.; Williams, David: "Rolling with “slipping”" : I. Séminaire de probabilités de Strasbourg, 17 (1983), p. 194-197 You can download it from http://www.numdam.org/item?id=SPS_1983__17__194_0) use the GNU R code and the python code (in blender3d) to create this image. |
Autor | Thomas Steiner |
Permiso (Reutilización de este archivo) |
Thomas Steiner put it under the CC-by-SA 2.5. If you use the python code or the R code, please give a reference to Christian Bayer and Thomas Steiner. |
Este archivo se encuentra bajo la licencia Creative Commons Genérica de Atribución/Compartir-Igual 2.5.
- Eres libre:
- de compartir – de copiar, distribuir y transmitir el trabajo
- de remezclar – de adaptar el trabajo
- Bajo las siguientes condiciones:
- atribución – Debes otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si realizaste algún cambio. Puedes hacerlo de cualquier manera razonable pero no de manera que sugiera que el licenciante te respalda a ti o al uso que hagas del trabajo.
- compartir igual – En caso de mezclar, transformar o modificar este trabajo, deberás distribuir el trabajo resultante bajo la misma licencia o una compatible como el original.
code
Perhaps you grab the source from the "edit" page without the wikiformating.
GNU R
This creates the paths and saves them into textfiles that can be read by blender. There are also paths for BMs on a torus.
# calculate a Brownian motion on the sphere; the output is a list # consisting of: # Z ... BM on the sphere # Y ... tangential BM, see Price&Williams # b ... independent 1D BM (see Price & Williams) # B ... generating 3D BM # n ... number of time-steps in the discretization # T ... the above processes are given on a uniform mesh of size # n on [0,T] euler = function(x0, T, n) { # initialize objects dt = T/(n-1); dB = matrix(rep(0,3*(n-1)),ncol=3, nrow=n-1); dB[,1] = rnorm(n-1, 0, sqrt(dt)); dB[,2] = rnorm(n-1, 0, sqrt(dt)); dB[,3] = rnorm(n-1, 0, sqrt(dt)); Z = matrix(rep(0,3*n), ncol=3, nrow=n); dZ = matrix(rep(0,3*(n-1)), ncol=3, nrow=n-1); Y = matrix(rep(0,3*n), ncol=3, nrow=n); B = matrix(rep(0,3*n), ncol=3, nrow=n); b = rep(0, n); Z[1,] = x0; #do the computation for(k in 2:n){ B[k,] = B[k-1,] + dB[k-1,]; dZ[k-1,] = cross(Z[k-1,],dB[k-1,]) - Z[k-1,]*dt; Z[k,] = Z[k-1,] + dZ[k-1,]; Y[k,] = Y[k-1,] - cross(Z[k-1,],dZ[k-1,]); b[k] = b[k-1] + dot(Z[k-1,],dB[k-1,]); } return(list(Z = Z, Y = Y, b = b, B = B, n = n, T = T)); } # write the output from euler in csv-files euler.write = function(bms, files=c("Z.csv","Y.csv","b.csv","B.csv"),steps=bms$n){ bigsteps=round(seq(1,bms$n,length=steps)) write.table(bms$Z[bigsteps,],file=files[1],col.names=F,row.names=F,sep=",",dec="."); write.table(bms$Y[bigsteps,],file=files[2],col.names=F,row.names=F,sep=",",dec="."); write.table(bms$b[bigsteps],file=files[3],col.names=F,row.names=F,sep=",",dec="."); write.table(bms$B[bigsteps,],file=files[4],col.names=F,row.names=F,sep=",",dec="."); } # calculate a Brownian motion on a 3-d torus with outer # radius R and inner radius r eulerTorus = function(x0, r, R, t, n) { # initialize objects dt = t/(n-1); dB = matrix(rep(0,3*(n-1)),ncol=3, nrow=n-1); dB[,1] = rnorm(n-1, 0, sqrt(dt)); dB[,2] = rnorm(n-1, 0, sqrt(dt)); dB[,3] = rnorm(n-1, 0, sqrt(dt)); Z = matrix(rep(0,3*n), ncol=3, nrow=n); B = matrix(rep(0,3*n), ncol=3, nrow=n); dZ = matrix(rep(0,3*(n-1)), ncol=3, nrow=n-1); Z[1,] = x0; nT = rep(0,3); #do the computation for(k in 2:n){ B[k,] = B[k-1,] + dB[k-1,]; nT = nTorus(Z[k-1,],r,R); dZ[k-1,] = cross(nT, dB[k-1,]) + HTorus(Z[k-1,],r,R)*nT*dt; Z[k,] = Z[k-1,] + dZ[k-1,]; } return(list(Z = Z, B = B, n = n, t = t)); } # write the output from euler in csv-files torus.write = function(bmt, files=c("tZ.csv","tB.csv"),steps=bmt$n){ bigsteps=round(seq(1,bmt$n,length=steps)) write.table(bmt$Z[bigsteps,],file=files[1],col.names=F,row.names=F,sep=",",dec="."); write.table(bmt$B[bigsteps,],file=files[2],col.names=F,row.names=F,sep=",",dec="."); } # "defining" function of a torus fTorus = function(x,r,R){ return((x[1]^2+x[2]^2+x[3]^2+R^2-r^2)^2 - 4*R^2*(x[1]^2+x[2]^2)); } # normal vector of a 3-d torus with outer radius R and inner radius r nTorus = function(x, r, R) { c1 = x[1]*(x[1]^2+x[2]^2+x[3]^2-R^2-r^2)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2 +3*x[3]^4*x[1]^2+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6+x[3]^6+3*x[3]^2*x[1]^4 -4*x[1]^2*x[2]^2*r^2-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2-2*x[1]^4*r^2 +R^4*x[1]^2+x[1]^2*r^4-2*x[2]^4*R^2-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4 +x[3]^2*R^4+x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(1/2); c2 = x[2]*(x[1]^2+x[2]^2+x[3]^2-R^2-r^2)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2 +3*x[3]^4*x[1]^2+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6+x[3]^6 +3*x[3]^2*x[1]^4-4*x[1]^2*x[2]^2*r^2-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2-2*x[1]^4*r^2+R^4*x[1]^2 +x[1]^2*r^4-2*x[2]^4*R^2-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4+x[3]^2*R^4 +x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(1/2); c3 = (x[1]^2+x[2]^2+x[3]^2+R^2-r^2)*x[3]/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2 +3*x[3]^4*x[1]^2 +6*x[3]^2*x[1]^2*x[2]^2 +3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2 -4*x[1]^2*x[2]^2*R^2+x[1]^6 +x[2]^6+x[3]^6+3*x[3]^2*x[1]^4 -4*x[1]^2*x[2]^2*r^2 -4*x[1]^2*x[3]^2*r^2 +2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2 +2*R^2*x[2]^2*r^2-2*x[1]^4*R^2 -2*x[1]^4*r^2+R^4*x[1]^2 +x[1]^2*r^4-2*x[2]^4*R^2 -2*x[2]^4*r^2+R^4*x[2]^2 +x[2]^2*r^4+x[3]^2*R^4 +x[3]^2*r^4-2*x[3]^4*r^2 +2*x[3]^4*R^2)^(1/2); return(c(c1,c2,c3)); } # mean curvature of a 3-d torus with outer radius R and inner radius r HTorus = function(x, r, R){ return( -(3*x[1]^4*r^4+4*x[2]^6*x[3]^2+4*x[1]^6*x[2]^2-3*x[2]^4*x[3]^2*R^2 -2*x[1]^6*R^2+4*x[1]^2*x[3]^6+x[3]^6*R^2+4*x[2]^4*R^2*r^2-x[1]^2*r^6 -x[2]^2*r^6+x[2]^4*R^4+4*x[2]^2*x[3]^2*R^4+6*x[2]^2*x[3]^2*r^4 -2*x[1]^2*R^2*r^4-x[1]^2*R^4*r^2-9*x[1]^4*x[2]^2*r^2 -9*x[1]^4*x[3]^2*r^2+4*x[1]^4*R^2*r^2+12*x[1]^2*x[3]^4*x[2]^2 -3*x[2]^6*r^2+4*x[1]^6*x[3]^2+3*x[3]^4*r^4-x[3]^4*R^4 -9*x[2]^4*x[3]^2*r^2+2*x[2]^2*x[3]^2*R^2*r^2+4*x[1]^2*x[2]^6 -6*x[1]^2*x[3]^2*x[2]^2*R^2-x[3]^2*r^6+6*x[2]^4*x[3]^4+x[3]^8 +x[1]^8+x[2]^8-3*x[1]^6*r^2+6*x[1]^4*x[3]^4+12*x[1]^2*x[3]^2*x[2]^4 -6*x[1]^2*x[2]^4*R^2-2*x[3]^4*R^2*r^2-2*x[2]^2*R^2*r^4-x[2]^2*R^4*r^2 -9*x[2]^2*x[3]^4*r^2+x[3]^2*R^2*r^4+x[3]^2*R^4*r^2-9*x[1]^2*x[2]^4*r^2 +2*x[1]^2*R^4*x[2]^2+6*x[1]^2*x[2]^2*r^4-3*x[1]^4*x[3]^2*R^2 -6*x[1]^4*x[2]^2*R^2+4*x[1]^2*x[3]^2*R^4+6*x[1]^2*x[3]^2*r^4 -9*x[1]^2*x[3]^4*r^2+8*x[1]^2*R^2*x[2]^2*r^2+2*x[1]^2*x[3]^2*R^2*r^2 +x[1]^4*R^4-3*x[3]^6*r^2-2*x[2]^6*R^2+6*x[1]^4*x[2]^4-x[3]^2*R^6 -18*x[1]^2*x[2]^2*x[3]^2*r^2+4*x[2]^2*x[3]^6+12*x[1]^4*x[3]^2*x[2]^2 +3*x[2]^4*r^4)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2+3*x[3]^4*x[1]^2 +6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4 -2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6 +x[3]^6+3*x[3]^2*x[1]^4-4*x[1]^2*x[2]^2*r^2 -4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2 -4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2 -2*x[1]^4*r^2+R^4*x[1]^2+x[1]^2*r^4-2*x[2]^4*R^2 -2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4+x[3]^2*R^4 +x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(3/2)); } # calculate the cross product of the two 3-dim vectors # x and y. No argument-checking for performance reasons cross = function(x,y){ res = rep(0,3); res[1] = x[2]*y[3] - x[3]*y[2]; res[2] = -x[1]*y[3] + x[3]*y[1]; res[3] = x[1]*y[2] - x[2]*y[1]; return(res); } # calculate the inner product of two vectors of dim 3 # returns a number, not a 1x1-matrix! dot = function(x,y){ return(sum(x*y)); } # calculate the cross product of the two 3-dim vectors # x and y. No argument-checking for performance reasons cross = function(x,y){ res = rep(0,3); res[1] = x[2]*y[3] - x[3]*y[2]; res[2] = -x[1]*y[3] + x[3]*y[1]; res[3] = x[1]*y[2] - x[2]*y[1]; return(res); } ############# ### main-teil set.seed(280180) et=eulerTorus(c(3,0,0),3,5,19,10000) torus.write(et,steps=9000) # #bms=euler(c(1,0,0),4,70000) #euler.write(bms,steps=10000)
blender3d
The blender (python) code to create a image that looks almost like this one. Play around...
## import data from matlab-text-file and draw BM on the S^2 ## (c) 2007 by Christan Bayer and Thomas Steiner from Blender import Curve, Object, Scene, Window, BezTriple, Mesh, Material, Camera, World from math import * ##import der BM auf der Kugel aus einem csv-file def importcurve(inpath="Z.csv"): infile = open(inpath,'r') lines = infile.readlines() vec=[] for i in lines: li=i.split(',') vec.append([float(li[0]),float(li[1]),float(li[2].strip())]) infile.close() return(vec) ##function um aus einem vektor (mit den x,y,z Koordinaten) eine Kurve zu machen def vec2Cur(curPts,name="BMonSphere"): bztr=[] bztr.append(BezTriple.New(curPts[0])) bztr[0].handleTypes=(BezTriple.HandleTypes.VECT,BezTriple.HandleTypes.VECT) cur=Curve.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen cur.appendNurb(bztr[0]) for i in range(1,len(curPts)): bztr.append(BezTriple.New(curPts[i])) bztr[i].handleTypes=(BezTriple.HandleTypes.VECT,BezTriple.HandleTypes.VECT) cur[0].append(bztr[i]) return( cur ) #erzeugt einen kreis, der später die BM umgibt (liegt in y-z-Ebene) def circle(r,name="tubus"): bzcir=[] bzcir.append(BezTriple.New(0.,-r,-4./3.*r, 0.,-r,0., 0.,-r,4./3.*r)) bzcir[0].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE) cur=Curve.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen cur.appendNurb(bzcir[0]) #jetzt alle weietren pkte bzcir.append(BezTriple.New(0.,r,4./3.*r, 0.,r,0., 0.,r,-4./3.*r)) bzcir[1].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE) cur[0].append(bzcir[1]) bzcir.append(BezTriple.New(0.,-r,-4./3.*r, 0.,-r,0., 0.,-r,4./3.*r)) bzcir[2].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE) cur[0].append(bzcir[2]) return ( cur ) #erzeuge mit skript eine (glas)kugel (UVSphere) def sphGlass(r=1.0,name="Glaskugel",n=40,smooth=0): glass=Mesh.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen for i in range(0,n): for j in range(0,n): x=sin(j*pi*2.0/(n-1))*cos(-pi/2.0+i*pi/(n-1))*1.0*r y=cos(j*pi*2.0/(n-1))*(cos(-pi/2.0+i*pi/(n-1)))*1.0*r z=sin(-pi/2.0+i*pi/(n-1))*1.0*r glass.verts.extend(x,y,z) for i in range(0,n-1): for j in range(0,n-1): glass.faces.extend([i*n+j,i*n+j+1,(i+1)*n+j+1,(i+1)*n+j]) glass.faces[i*(n-1)+j].smooth=1 return( glass ) def torus(r=0.3,R=1.4): krGro=circle(r=R,name="grTorusKreis") #jetzt das material ändern def verglasen(mesh): matGlass = Material.New("glas") ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen #matGlass.setSpecShader(0.6) matGlass.setHardness(30) #für spec: 30 matGlass.setRayMirr(0.15) matGlass.setFresnelMirr(4.9) matGlass.setFresnelMirrFac(1.8) matGlass.setIOR(1.52) matGlass.setFresnelTrans(3.9) matGlass.setSpecTransp(2.7) #glass.materials.setSpecTransp(1.0) matGlass.rgbCol = [0.66, 0.81, 0.85] matGlass.mode |= Material.Modes.ZTRANSP matGlass.mode |= Material.Modes.RAYTRANSP #matGlass.mode |= Material.Modes.RAYMIRROR mesh.materials=[matGlass] return ( mesh ) def maleBM(mesh): matDraht = Material.New("roterDraht") ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen matDraht.rgbCol = [1.0, 0.1, 0.1] mesh.materials=[matDraht] return( mesh ) #eine solide Mesh-Ebene (Quader) # auf der höhe ebh, dicke d, seitenlänge (quadratisch) 2*gr def ebene(ebh=-2.5,d=0.1,gr=6.0,name="Schattenebene"): quader=Mesh.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen #obere ebene quader.verts.extend(gr,gr,ebh) quader.verts.extend(-gr,gr,ebh) quader.verts.extend(-gr,-gr,ebh) quader.verts.extend(gr,-gr,ebh) #untere ebene quader.verts.extend(gr,gr,ebh-d) quader.verts.extend(-gr,gr,ebh-d) quader.verts.extend(-gr,-gr,ebh-d) quader.verts.extend(gr,-gr,ebh-d) quader.faces.extend([0,1,2,3]) quader.faces.extend([0,4,5,1]) quader.faces.extend([1,5,6,2]) quader.faces.extend([2,6,7,3]) quader.faces.extend([3,7,4,0]) quader.faces.extend([4,7,6,5]) #die ebene einfärben matEb = Material.New("ebenen_material") ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen matEb.rgbCol = [0.53, 0.51, 0.31] matEb.mode |= Material.Modes.TRANSPSHADOW matEb.mode |= Material.Modes.ZTRANSP quader.materials=[matEb] return (quader) ################### #### main-teil #### # wechsel in den edit-mode editmode = Window.EditMode() if editmode: Window.EditMode(0) dataBMS=importcurve("C:/Dokumente und Einstellungen/thire/Desktop/bmsphere/Z.csv") #dataBMS=importcurve("H:\MyDocs\sphere\Z.csv") BMScur=vec2Cur(dataBMS,"BMname") #dataStereo=importcurve("H:\MyDocs\sphere\stZ.csv") #stereoCur=vec2Cur(dataStereo,"SterName") cir=circle(r=0.01) glass=sphGlass() glass=verglasen(glass) ebe=ebene() #jetzt alles hinzufügen scn=Scene.GetCurrent() obBMScur=scn.objects.new(BMScur,"BMonSphere") obcir=scn.objects.new(cir,"round") obgla=scn.objects.new(glass,"Glaskugel") obebe=scn.objects.new(ebe,"Ebene") #obStereo=scn.objects.new(stereoCur,"StereoCurObj") BMScur.setBevOb(obcir) BMScur.update() BMScur=maleBM(BMScur) #stereoCur.setBevOb(obcir) #stereoCur.update() cam = Object.Get("Camera") #cam.setLocation(-5., 5.5, 2.9) #cam.setEuler(62.0,-1.,222.6) #alternativ, besser?? cam.setLocation(-3.3, 8.4, 1.7) cam.setEuler(74,0,200) world=World.GetCurrent() world.setZen([0.81,0.82,0.61]) world.setHor([0.77,0.85,0.66]) if editmode: Window.EditMode(1) # optional, zurück n den letzten modus #ergebnis von #set.seed(24112000) #sbm=euler(c(0,0,-1),T=1.5,n=5000) #euler.write(sbm)
Elementos representados en este archivo
representa a
image/jpeg
f51c8d9194ca77a5c2a7d77d21c292e592d5c6c5
10 693 byte
356 píxel
365 píxel
Historial del archivo
Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.
Fecha y hora | Miniatura | Dimensiones | Usuario | Comentario | |
---|---|---|---|---|---|
actual | 19:53 22 dic 2013 | 365 × 356 (10 kB) | Olli Niemitalo | Cropped (in a JPEG-lossless way) | |
22:53 28 sep 2007 | 783 × 588 (14 kB) | Thire | {{Information |Description = Brownian Motion on a Sphere |Source = read some papere ;) use the GNU R code and the python code (in blender3d) to create this image. |Date = summer 2007 (blender file as of ) |Author = Thomas Steiner |P |
Usos del archivo
La siguiente página usa este archivo:
Uso global del archivo
Las wikis siguientes utilizan este archivo:
- Uso en als.wikipedia.org
- Uso en ar.wikipedia.org
- Uso en ast.wikipedia.org
- Uso en bn.wikipedia.org
- Uso en de.wikipedia.org
- Uso en en.wikipedia.org
- Uso en fr.wikipedia.org
- Uso en hu.wikipedia.org
- Uso en hy.wikipedia.org
- Uso en kn.wikipedia.org
- Uso en lt.wikipedia.org
- Uso en ms.wikipedia.org
- Uso en pt.wikipedia.org
- Uso en ru.wikipedia.org
- Uso en sl.wikipedia.org
- Uso en sq.wikipedia.org
- Uso en sr.wikipedia.org
- Uso en uk.wikipedia.org
- Uso en www.wikidata.org
Obtenido de «https://es.wikipedia.org/wiki/Archivo:BMonSphere.jpg»