English: This NASA/ESA Hubble Space Telescope image seems to sink into the screen, plunging the viewer into the dark depths of the early Universe. Massive galaxy clusters — such as the subject of this image, Abell 1300 — help us to better understand the cosmos. They are essentially giant natural telescopes, magnifying the light from any galaxies sitting behind them and helping us peer further back in time.
This bizarre kind of time travel is possible due to a phenomenon called gravitational lensing, whereby the gravitational influence of a massive object such as Abell 1300 acts like a lens, bending the very fabric of space around it and thus causing more distant light to move in a curved path. To the observer, the source of the light — a background object such as a primordial galaxy, for example — appears both distorted and magnified. The lensing power of massive clusters has helped us to discover some of the most distant known galaxies in the Universe. Hubble has observed this phenomenon many times; see a selection of images here.
This image was taken by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing program called RELICS. The program imaged 41 massive galaxy clusters over the course of 390 Hubble orbits and 100 Spitzer Space Telescope observing hours, aiming to find the brightest distant galaxies. Studying these galaxies in more detail with both current telescopes and the future NASA/ESA/CSA James Webb Space Telescope (JWST) will hopefully tell us more about our cosmic origins.
ESA/Hubble images, videos and web texts are released by the ESA under the Creative Commons Attribution 4.0 International license and may on a non-exclusive basis be reproduced without fee provided they are clearly and visibly credited. Detailed conditions are below; see the ESA copyright statement for full information. For images created by NASA or on the hubblesite.org website, or for ESA/Hubble images on the esahubble.org site before 2009, use the {{PD-Hubble}} tag.
Conditions:
The full image or footage credit must be presented in a clear and readable manner to all users, with the wording unaltered (for example: "ESA/Hubble"). Web texts should be credited to ESA/Hubble (except when used by media). The credit should not be hidden or disassociated from the image footage. Links should be active if the credit is online. See the usage rights Q&A section on the ESA copyright page for guidance.
ESA/Hubble materials may not be used to state or imply the endorsement by ESA/Hubble or any ESA/Hubble employee of a commercial product or service.
ESA/Hubble requests a copy of the product sent to them to be indexed in their archive.
If an image shows an identifiable person, using that image for commercial purposes may infringe that person's right of privacy, and separate permission should be obtained from the individual.
If images or visuals are changed significantly from the original work (apart from resizing, cropping), we suggest that the changes are mentioned after the credit line. For example "Original image by ESA/Hubble (M. Kornmesser), warping and recolouring by NN".
Notes:
Note that this general permission does not extend to the use of ESA/Hubble's logo, which shall remain protected and may not be used or reproduced without prior and individual written consent of ESA/Hubble.
Also note that music, scientific papers and code on the esahubble.org site are not released under this license and can not be used for non-ESA/Hubble products.
By reproducing ESA/Hubble material, in part or in full, the user acknowledges the terms on which such use is permitted.
de compartir – de copiar, distribuir y transmitir el trabajo
de remezclar – de adaptar el trabajo
Bajo las siguientes condiciones:
atribución – Debes otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si realizaste algún cambio. Puedes hacerlo de cualquier manera razonable pero no de manera que sugiera que el licenciante te respalda a ti o al uso que hagas del trabajo.
https://creativecommons.org/licenses/by/4.0CC BY 4.0 Creative Commons Attribution 4.0 truetrue
Leyendas
Añade una explicación corta acerca de lo que representa este archivo
#Spacemedia - Upload of https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2017/11/cosmic_relics/17246896-1-eng-GB/Cosmic_RELICS.jpg via Commons:Spacemedia
Este archivo contiene información adicional, probablemente añadida por la cámara digital o el escáner usado para crearlo o digitalizarlo.
Si el archivo ha sido modificado desde su estado original, pueden haberse perdido algunos detalles.
Fecha y hora de la generación de los datos
15:57 9 jun 2117
Software usado
Adobe Photoshop CC 2017 (Windows)
Fecha y hora de modificación del archivo
14:48 9 jun 2017
Fecha y hora de la digitalización
21:10 26 abr 2017
Fecha en la cual fueron modificados por última vez los metadatos
16:48 9 jun 2017
Id. único del documento original
xmp.did:482d9549-c711-6d48-ab3a-64f8835f1bbd
Crédito/proveedor
ESA/Hubble & NASA
Fuente
ESA/Hubble
Título breve
Cosmic RELICS
Título de la imagen
This NASA/ESA Hubble Space Telescope image seems to sink into the screen, plunging the viewer into the dark depths of the early Universe. Massive galaxy clusters— such as the subject of this image, Abell 1300 — help us to better understand the cosmos. They are essentially giant natural telescopes, magnifying the light from any galaxies sitting behind them and helping us peer further back in time. This bizarre kind of time travel is possible due to a phenomenon called gravitational lensing, whereby the gravitational influence of a massive object such as Abell 1300 acts like a lens, bending the very fabric of space around it and thus causing more distant light to move in a curved path. To the observer, the source of the light — a background objectsuch as a primordial galaxy, for example — appears both distorted and magnified. The lensing power of massive clusters has helped us to discover some of the most distant known galaxies in the Universe. Hubble has observed this phenomenon many times; see a selection of images here. This image wastaken by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing program called RELICS. The program imaged 41 massive galaxy clusters over the course of 390 Hubble orbits and 100 Spitzer Space Telescope observing hours, aiming to find the brightest distant galaxies. Studying these galaxies in more detail with both current telescopes and the future NASA/ESA/CSA James Webb Space Telescope (JWST) will hopefully tell us more about our cosmic origins.