En matemáticas, en particular en álgebra lineal, una matriz cuadrada de orden se dice que es invertible, no singular, no degenerada o regular si existe otra matriz cuadrada de orden , llamada matriz inversa de y denotada por si , donde es la matriz identidad de orden y el producto utilizado es el producto de matrices usual.
Una matriz cuadrada no invertible se dice que es singular o degenerada. Una matriz es singular si y sólo si su determinante es nulo. La matriz singular se caracteriza porque su multiplicación por la matriz columna es igual a cero para algún no nulo. El conjunto de estos vectores (y al subespacio vectorial formado por ellos) se llamará ker (de kernel, núcleo en alemán), para una matriz invertible ker es el vector nulo.
La inversión de matrices es el proceso de encontrar la matriz inversa de una matriz dada.
Si la matriz es invertible, también lo es su transpuesta, y el inverso de su transpuesta es la transpuesta de su inversa, es decir
Y, evidentemente:
Una matriz con coeficientes en los reales es invertible si y sólo si el determinante de A es distinto de cero. Además la inversa satisface la igualdad:
El conjunto de matrices de con componentes sobre el cuerpo que admiten inversa, con el producto de matrices, tiene una estructura isomorfa al grupo lineal de orden . En este grupo la operación de inversa es un automorfismo.
Supongamos que el determinante de es distinto de cero. Sea el elemento ij de la matriz y sea la matriz sin la fila y la columna (comúnmente conocida como -ésimo menor de A). Entonces tenemos que
Además, si , entonces podemos deducir que
pues la parte izquierda de la relación es el determinante de con la columna sustituida por la columna y, de nuevo por propiedades del determinante, sabemos que una matriz con dos filas iguales tiene determinante cero.
Cuando la matriz tiene más de tres filas, esta fórmula es muy ineficiente y conduce a largos cálculos. Hay métodos alternativos para calcular la matriz inversa que son bastante más eficientes.
El método de eliminación de Gauss-Jordan puede utilizarse para determinar si una determinada matriz es invertible y para encontrar su inversa. Una alternativa es la descomposición LU, que descompone una matriz dada como producto de dos matrices triangulares, una inferior y otra superior, mucho más fáciles de invertir.
Utilizando el método de Gauss-Jordan se coloca a la izquierda la matriz dada y a la derecha la matriz identidad. Luego por medio del uso de pivotes se intenta formar en la izquierda la matriz identidad y la matriz que quede a la derecha será la matriz inversa a la dada.
↑Apostol, Tom M. (2002). «3. Determinantes, 5. Autovalores de operadores en espacios euclídeos». Calculus vol. 2 (2ª edición). Barcelona: Reverté S.A. pp. 113,151. ISBN84-291-5003-X.|fechaacceso= requiere |url= (ayuda)
↑Clapham, Christopher (2004). Diccionario de Matemáticas (1ª edición). Madrid: Editorial Complutense. pp. 3-4. ISBN84-89784-56-6.|fechaacceso= requiere |url= (ayuda)
↑Castañeda Hernandez, Sebastián; Barrios Sarmiento, Agustín (2004). «3.6 Cofactores y Regla de Cramer». Notas de álgebra lineal (2ª edición). Barranquilla (colombia): Ediciones Uninorte. p. 193. ISBN958-8133-89-0.|fechaacceso= requiere |url= (ayuda)
↑Díaz Martín, Jose Fernando (2005). «6. Determinantes». Introduccion Al Algebra (1ª edición). La coruña (España): NetBiblo. pp. 229-230,237-238. ISBN84-9745-128-7.|fechaacceso= requiere |url= (ayuda)
↑Perelló, Miquel A. (2002). «4.3.3. Cálculo por determinantes de la matriz inversa». Álgebra lineal. Teoría y práctica. Barcelona: Edicions UPC. pp. 129,136. ISBN8483016621.|fechaacceso= requiere |url= (ayuda)