El teorema central del límite o teorema del límite central indica que, en condiciones muy generales, si es la suma de variables aleatorias independientes, con media y varianza finitas, entonces la función de distribución de «se aproxima bien» a una distribución normal (también llamada distribución gaussiana, curva de Gauss o campana de Gauss). Así pues, el teorema asegura que esto ocurre cuando la suma de estas variables aleatorias e independientes es lo suficientemente grande.[1][2]
El nombre viene de un documento científico escrito por George Pólya en 1920, titulado Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem[3] [Sobre el «teorema del límite» (Grenzwertsatz) central del cálculo probabilístico y el problema de los momentos], por lo que la denominación más fiel a la original sería teorema central del límite.
Este teorema ha sufrido muchos cambios durante el desarrollo formal de la teoría de la probabilidad. Las versiones anteriores del teorema se remontan a 1811, pero en su forma general moderna, este resultado fundamental en la teoría de la probabilidad se enunció con precisión en una fecha tan tardía como 1920,[4] sirviendo así de puente entre la teoría de la probabilidad clásica y la moderna.
Si son muestras aleatorias extraídas de una población con media global y varianza finita. , y si es la media muestral de las primeras muestras, entonces la forma límite de la distribución, , con , es una distribución normal estándar.[5].
Por ejemplo, supongamos que se obtiene una muestra que contiene muchas observaciones, cada observación se genera aleatoriamente de forma que no depende de los valores de las demás observaciones, y que se calcula la media aritmética de los valores observados. Si este procedimiento se realiza muchas veces, el teorema del límite central dice que la distribución de probabilidad de la media se aproximará mucho a una distribución normal.
El teorema del límite central tiene diversas variantes. En su forma común, las variables aleatorias deben ser independientes e idénticamente distribuidas (i.i.d.). En sus variantes, la convergencia de la media a la distribución normal también se produce para distribuciones no idénticas o para observaciones no independientes, si cumplen ciertas condiciones.
La versión más antigua de este teorema, según la cual la distribución normal puede utilizarse como aproximación a la distribución binomial, es el teorema de De Moivre-Laplace.
Introducción
Sabemos que si es una variable aleatoria tal que entonces su función de densidad está dada por
para donde denota la media y la varianza de la variable aleatoria . En particular cuando y obtenemos
es decir, la distribución normal estándar, denotada por .
Se define la variable aleatoria como la suma de variables aleatorias independientes e idénticamente distribuidas, cada una de ellas con una media y varianza , es decir
donde y . Con lo anterior, la media de es y la varianza es pues son variables aleatorias independientes. Con tal de hacer más fácil la comprensión del teorema y su posterior uso, se hace una estandarización de como
para que la media de la nueva variable sea igual a y la desviación estándar sea igual a . Así, la variable convergerán en distribución a la distribución normal estándar cuando tienda a infinito. Como consecuencia, si es la función de distribución de para cada número real entonces
donde indica probabilidad y se refiere a límite matemático.
Secuencias independientes
Clásico CLT
Sea una secuencia de muestras aleatorias - es decir, una secuencia de i.i. d. variables aleatorias extraídas de una distribución de valor esperado dada por y varianza finita dada por . Supongamos que estamos interesados en la media muestral de las primeras muestras. Por la ley de los grandes números, los promedios muestrales convergen casi seguro (y por tanto también convergen en probabilidad) al valor esperado como ..
El teorema clásico del límite central describe el tamaño y la forma de distribución de las fluctuaciones estocásticas alrededor del número determinista durante esta convergencia. Más concretamente, afirma que a medida que se hace mayor, la distribución de la diferencia entre la media muestral y su límite , cuando se multiplica por el factor ( es decir ) se aproxima a la distribución normal con media 0 y varianza . Para n suficientemente grande, la distribución de se aproxima arbitrariamente a la distribución normal con media y varianza .
La utilidad del teorema es que la distribución de se aproxima a la normalidad independientemente de la forma de la distribución de cada . Formalmente, el teorema puede enunciarse de la siguiente manera: Teorema de Lindeberg–Lévy CLT:
Supongamos que es una secuencia de variables aleatorias i.i.d. con and . Entonces se tiene se aproxima a infinito, las variables aleatorias convergen en la distribución a una normal :[7]
En el caso , converger en la distribución significa que la función de distribución acumulativa de convergen puntualmente a la cdf de la distribución: para cada real number , donde es la fdc normal estándar evaluada at . La convergencia es uniforme en en el sentido de que donde denota el límite superior mínimo (o supremum) del conjunto.[8]
Teorema
De manera formal y compacta el teorema enuncia[9]
Sean variables aleatorias independientes e idénticamente distribuidas con y , se define
Entonces la función de distribución de converge hacia la función de distribución normal estándar cuando , es decir,
Es muy común encontrarlo con la variable estandarizada en función de la media muestral , es decir
puesto que son equivalentes (sólo se divide tanto numerador como denominador entre ).
Es importante remarcar que este teorema no dice nada acerca de la distribución de la variable aleatoria , excepto la existencia de media y varianza.[10]
Propiedades
- El teorema del límite central garantiza una distribución aproximadamente normal cuando es suficientemente grande.
- Existen diferentes versiones del teorema, en función de las condiciones utilizadas para asegurar la convergencia. Una de las más simples establece que es suficiente que las variables que se suman sean independientes, idénticamente distribuidas, con valor esperado y varianza finitas.
- La aproximación entre las dos distribuciones es, en general, mayor en el centro de las mismas que en sus extremos o colas, motivo por el cual se prefiere el nombre "teorema del límite central" ("central" califica al límite, más que al teorema).
- Este teorema, perteneciente a la teoría de la probabilidad, encuentra aplicación en muchos campos relacionados, tales como la inferencia estadística o la teoría de renovación.
Varianza nula o infinita
En el caso de variables aleatorias independientes e idénticamente distribuidas, cada una de ellas con varianza nula o infinita, la distribución de las variables
no convergen en distribución hacia una normal.
A continuación se presentan los dos casos por separado.
Varianza infinita
Considérese el caso de variables que siguen una distribución de Cauchy:
En este caso puede demostrarse que la distribución asintótica de viene dada por otra distribución de Cauchy:
Para otras distribuciones de varianza infinita no es fácil dar una expresión cerrada para su distribución de probabilidad aunque su función característica sí tiene una forma sencilla, dada por el teorema de Lévy-Khintchine:[11]
donde y:
Las condiciones anteriores equivalen a que una distribución de probabilidad sea una distribución estable.
Varianza nula
Este caso corresponde trivialmente a una función degenerada tipo delta de Dirac cuya función de distribución viene dada por:
En este caso resulta que la variable trivialmente tiene la misma distribución que cada una de las variables independientes.
Véase también
Referencias
- ↑ Filmus, Yuval (enero a febrero de 2010). Two Proofs of the Central Limit Theorem (en inglés). pp. 1-3. Consultado el 13 de diciembre de 2010.
- ↑ Grinstead, Charles M.; Snell, J. Laurie (1997). «9. Central Limit Theorem». Introduction to Probability (PDF) (en inglés) (2 edición). AMS Bookstore. pp. 325-360. ISBN 0821807498. Consultado el 15 de abril de 2009.
- ↑ «The central limit theorem around 1935». Statistical Science (en inglés) 1 (1). 1986. pp. 78-91. doi:10.2307/2245503.
- ↑ Fischer, Hans. «Una historia del teorema del límite central». Springer New York Dordrecht Heidelberg London. Archivado desde pdf el original el 31 de octubre de 2017. Consultado el 29 de abril de 2021.
- ↑ Montgomery, Douglas C.; Runger, George C. (2014). Estadística aplicada y probabilidad para ingenieros (6th edición). Wiley. p. 241. ISBN 9781118539712.
- ↑ Rouaud, Mathieu (2013). Probability, Statistics and Estimation. p. 10. Archivado desde el original el 9 de octubre de 2022.
- ↑ Billingsley (1995, p. 357)
- ↑ Bauer (2001, Theorem 30.13, p.199)
- ↑ Charles Stanton. «Central limit theorem». Probability and Statistics Demos (en inglés). Archivado desde el original el 2 de junio de 2010. Consultado el 13 de diciembre de 2010.
- ↑ Wasserman, Larry (2004). «5. Convergence of Random Variables». All of Statistics (en inglés). Springer. p. 77. ISBN 0-387-40272-1.
- ↑ P. Ibarrola, L. Pardo y V. Quesada: Teoría de la Probabilidad, p. 521-522
Bibliografía
- Bárány, Imre; Vu, Van (2007). «Central limit theorems for Gaussian polytopes». Annals of Probability (Institute of Mathematical Statistics) 35 (4): 1593-1621. S2CID 9128253. arXiv:math/0610192. doi:10.1214/009117906000000791.
- Bauer, Heinz (2001). Measure and Integration Theory. Berlin: de Gruyter. ISBN 3110167190.
- Billingsley, Patrick (1995). Probability and Measure (3rd edición). John Wiley & Sons. ISBN 0-471-00710-2.
- Bradley, Richard (2007). Introduction to Strong Mixing Conditions (1st edición). Heber City, UT: Kendrick Press. ISBN 978-0-9740427-9-4.
- Bradley, Richard (2005). «Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions». Probability Surveys 2: 107-144. Bibcode:2005math.....11078B. S2CID 8395267. arXiv:math/0511078. doi:10.1214/154957805100000104.
- Dinov, Ivo; Christou, Nicolas; Sanchez, Juana (2008). «Central Limit Theorem: New SOCR Applet and Demonstration Activity». Journal of Statistics Education (ASA) 16 (2): 1-15. PMC 3152447. PMID 21833159. doi:10.1080/10691898.2008.11889560. Archivado desde el original el 3 de marzo de 2016. Consultado el 16 de mayo de 2023.
- Durrett, Richard (2004). Probability: theory and examples (3rd edición). Cambridge University Press. ISBN 0521765390.
- Gaposhkin, V. F. (1966). «Lacunary series and independent functions». Russian Mathematical Surveys 21 (6): 1-82. Bibcode:1966RuMaS..21....1G. S2CID 250833638. doi:10.1070/RM1966v021n06ABEH001196..
- Klartag, Bo'az (2007). «A central limit theorem for convex sets». Inventiones Mathematicae 168 (1): 91-131. Bibcode:2007InMat.168...91K. S2CID 119169773. arXiv:math/0605014. doi:10.1007/s00222-006-0028-8.
- Klartag, Bo'az (2008). «A Berry–Esseen type inequality for convex bodies with an unconditional basis». Probability Theory and Related Fields 145 (1–2): 1-33. S2CID 10163322. arXiv:0705.0832. doi:10.1007/s00440-008-0158-6.
- Blaiotta, Jimena; Delieutraz, Pablo (30 de julio de 2004). «Teorema central del límite» (PDF). Consultado el 15 de diciembre de 2010.
- Behar Gutiérrez, Roberto; Grima Cintas, Pere (2004). 55 respuestas a dudas típicas de Estadística. Madrid: Ediciones Díaz de Santos, S.A. pp. 187-189. ISBN 84-7978-643-4.
Enlaces externos
- Wikimedia Commons alberga una categoría multimedia sobre Teorema del límite central.
- Central Limit Theorem at Khan Academy
- Hazewinkel, Michiel, ed. (2001), «Teorema del límite central», Encyclopaedia of Mathematics (en inglés), Springer, ISBN 978-1556080104.
- Weisstein, Eric W. «Central Limit Theorem». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- A music video demonstrating the central limit theorem with a Galton board by Carl McTague