En matemáticas, el teorema del binomio es una fórmula que proporciona el desarrollo de la -ésima potencia de un binomio, siendo . De acuerdo con el teorema, es posible expandir la potencia en una suma que implica términos de la forma , donde los exponentes , es decir, son números naturales con , y el coeficiente de cada término es un número entero positivo que depende de y . Cuando un exponente es cero, la correspondiente potencia es usualmente omitida del término.
El coeficiente en los términos de es conocido como el coeficiente binomial o (los dos tienen el mismo valor).
Este teorema establece que cualquier potencia de un binomio , con xy distinto de 0, puede ser expandida en una suma de la forma:
donde
es el coeficiente binomial, el cual representa el número de formas de escoger elementos de un conjunto con elementos: las k-combinaciones de un conjunto de n elementos.
Usando la fórmula de cálculo de dicho coeficiente, se obtiene la siguiente ecuación:
Para obtener la expansión de las potencias de una resta, basta con tomar en lugar de en los términos con potencias impares:
Isaac Newton generalizó la fórmula para exponentes reales, considerando una serie infinita:
donde puede ser cualquier número real, no necesariamente positivo ni entero, y los coeficientes están dados por el producto:
La expansión para la potencia recíproca es la siguiente:
La suma en (3) converge y la igualdad es verdadera siempre que los números reales o complejos e sean suficientemente cercanos, en el sentido de que el valor absoluto de sea menor que uno.
El teorema del binomio puede ser generalizado para incluir potencias de sumas de más de dos términos. En general:
En esta fórmula, la suma se toma sobre todos los valores enteros naturales desde hasta tales que la suma de todos estos valores es igual a . Los coeficientes de la sumatoria, conocidos como coeficientes multinomiales se calculan según la fórmula:
Desde el punto de vista de la combinatoria, el coeficiente multinomial cuenta el número de diferentes maneras de dividir un conjunto de elementos en subconjuntos disjuntos de tamaños
La Regla General de Leibniz proporciona la ésima derivada del producto de dos funciones y de manera similar al teorema del binomio:
En esta igualdad, el superíndice indica la ésima derivada de una función. Si hacemos y se cancela a ambos lados de la igualdad el factor común y se obtiene el teorema del binomio.
Usando el teorema del binomio, la expresión del lado derecho puede ser expandida y luego, las partes real e imaginaria son extraídas para obtener las fórmulas de los ángulos múltiples. Ya que:
Comparando esta igualdad con la fórmula de De Moivre, queda claro que:
las cuales son las identidades usuales del ángulo doble.
De manera similar:
Comparando con el enunciado de la fórmula de De Moivre, al separar las partes reales e imaginarias del resultado:
El teorema del binomio está estrechamente relacionado con la función de probabilidad de masa de la distribución binomial negativa. La probabilidad de que una colección (contable) de pruebas de Bernoulli independientes con probabilidad de éxito no ocurra es:
Un límite superior útil para esta cantidad es .[1]
Atribuido a Isaac Newton, el teorema fue en realidad descubierto por primera vez por Al-Karjí alrededor del año 1000. Aplicando los métodos de John Wallis de interpolación y extrapolación a nuevos problemas, Newton utilizó los conceptos de exponentes generalizados mediante los cuales una expresión polinómica se transformaba en una serie infinita. Así estuvo en condiciones de demostrar que un gran número de series ya existentes eran casos particulares, bien por diferenciación, bien por integración.
En el invierno de 1664 y 1665, Newton quien se encontraba en su hogar en Lincolnshire, extendió la expansión binomial en el caso en que es un número racional y en el otoño siguiente, cuando el exponente es un número negativo. Para ambos casos, se encontró con que la expresión resultante era una serie de infinitos términos.
Para el caso de los exponentes negativos, Newton usó la forma escalonada del Triángulo de Pascal, la cual expuso el matemático alemán Michael Stifel en su obra Arithmetica Integra:[2]
Bajo esta forma es fácil ver, que la suma del j-ésimo elemento y el (j-1)-ésimo elemento de un renglón dan como resultado el elemento j-ésimo del renglón que está debajo. Newton extendió esta tabla hacia arriba, hallando la diferencia entre el j-ésimo elemento en un renglón y el (j-1)-ésimo elemento del renglón por encima del anterior, colocando el resultado como el j-ésimo elemento de ese renglón superior. Así, fue capaz de obtener esta nueva tabla:
Al darse cuenta de que la serie de números no tenía final, Newton concluyó que para un exponente entero negativo la serie es infinita lo que indica, de hecho, que si la suma representaba al binomio el resultado obtenido es válido si se encuentra entre -1 y 1. Si es un número racional, estudiando el patrón obtenido, Newton pudo obtener coeficientes binomiales para fracciones tales como , y , por ejemplo. En ese caso, si , los coeficientes son , , , , etc. Newton pudo comprobar, que si multiplicaba la expansión para , por sí misma, obtenía precisamente el caso en que .[2]
A partir de este descubrimiento, Newton tuvo la intuición de que se podía operar con series infinitas del mismo modo que con expresiones polinómicas finitas. Newton nunca publicó este teorema. Lo hizo Wallis por primera vez en 1685 en su Álgebra, atribuyendo a Newton este descubrimiento. El teorema binómico para se encuentra en los Elementos de Euclides (300 a. C.) y el término «coeficiente binomial» fue introducido por Stifel.