MAP quinasa 1 | ||||
---|---|---|---|---|
Estructura tridimensional de la proteína MAPK1. | ||||
Estructuras disponibles | ||||
PDB |
Lista de códigos PDB 1erk
| |||
Identificadores | ||||
Símbolos | MAPK1 (HGNC: 6871) p38, ERK, p40, ERK2, ERT1, MAPK2, P42MAPK, PRKM1, PRKM2, p41, p41mapk | |||
Identificadores externos | ||||
Locus | Cr. 22 q11.21-q11.22 | |||
Ortólogos | ||||
Especies |
| |||
Entrez |
| |||
UniProt |
| |||
RefSeq (ARNm) |
| |||
La MAP quinasa 1, también conocida como MAPK1, p42MAPK y ERK2, es una enzima codificada en humanos por el gen mapk1.[1]
La MAPK1 pertenece a la familia de las MAP quinasas. Las MAP quinasas actúan como punto de integración de múltiples señales bioquímicas, y están implicadas en una amplia variedad de procesos celulares tales como proliferación celular, diferenciación celular, regulación de la transcripción y desarrollo. La activación de esta quinasa requiere su fosforilación por otras quinasas. Tras la activación, MAPK1 se trasloca al núcleo de las células estimuladas, donde fosforilará diversas dianas nucleares. Se han descrito dos variantes transcripcionales de este gen, que codifican la misma proteína, diferenciándose únicamente en los UTRs.[2]
Interacciones
La proteína MAPK1 ha demostrado ser capaz de interaccionar con:
- TSC2[3]
- PEA15[4]
- DUSP1[5][6]
- NEK2[7]
- DUSP3[8]
- STAT5A[9][10]
- MAPK14[11][12]
- FHL2[13]
- TNIP1[14]
- RPS6KA3[15][16]
- RPS6KA2[15][17]
- MAP2K1[11][18][19][20][21][22]
- RPS6KA1[16][17][23]
- PTPN7[24][25]
- MKNK1[26]
- CIITA[27]
- TOB1[28]
- PEBP1[19]
- DUSP22[29]
- Myc[30][31][32]
- ADAM17[33]
- SORBS3[34]
- ELK1[23][35]
- VAV1[36][37]
- HDAC4[38]
- MKNK2[26][39]
- MAP3K1[40]
- UBR5[23]
Véase también
- MAP quinasas (MAPK)
- ERK
Referencias
- ↑ Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD (febrero de 1992). «Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs». Biochem. Biophys. Res. Commun. 182 (3): 1416-22. PMID 1540184. doi:10.1016/0006-291X(92)91891-S.
- ↑ «Entrez Gene: MAPK1 mitogen-activated protein kinase 1».
- ↑ Ma, Li; Chen Zhenbang, Erdjument-Bromage Hediye, Tempst Paul, Pandolfi Pier Paolo (Apr. de 2005). «Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis». Cell (United States) 121 (2): 179-93. ISSN 0092-8674. PMID 15851026. doi:10.1016/j.cell.2005.02.031.
- ↑ Formstecher, E; Ramos J W, Fauquet M, Calderwood D A, Hsieh J C, Canton B, Nguyen X T, Barnier J V, Camonis J, Ginsberg M H, Chneiweiss H (Aug. de 2001). «PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase». Dev. Cell (United States) 1 (2): 239-50. ISSN 1534-5807. PMID 11702783.
- ↑ Slack, D N; Seternes O M, Gabrielsen M, Keyse S M (mayo. de 2001). «Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1». J. Biol. Chem. (United States) 276 (19): 16491-500. ISSN 0021-9258. PMID 11278799. doi:10.1074/jbc.M010966200.
- ↑ Calvisi, Diego F; Pinna Federico, Meloni Floriana, Ladu Sara, Pellegrino Rossella, Sini Marcella, Daino Lucia, Simile Maria M, De Miglio Maria R, Virdis Patrizia, Frau Maddalena, Tomasi Maria L, Seddaiu Maria A, Muroni Maria R, Feo Francesco, Pascale Rosa M (Jun. de 2008). «Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma». Cancer Res. (United States) 68 (11): 4192-200. PMID 18519678. doi:10.1158/0008-5472.CAN-07-6157.
- ↑ Lou, Yang; Xie Wei, Zhang Dong-Fang, Yao Jian-hui, Luo Zhao-feng, Wang Yu-Zhen, Shi Yun-Yu, Yao Xue-Biao (Aug. de 2004). «Nek2A specifies the centrosomal localization of Erk2». Biochem. Biophys. Res. Commun. (United States) 321 (2): 495-501. ISSN 0006-291X. PMID 15358203. doi:10.1016/j.bbrc.2004.06.171.
- ↑ Todd, J L; Tanner K G, Denu J M (mayo. de 1999). «Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway». J. Biol. Chem. (UNITED STATES) 274 (19): 13271-80. ISSN 0021-9258. PMID 10224087.
- ↑ Pircher, T J; Petersen H, Gustafsson J A, Haldosén L A (Apr. de 1999). «Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a». Mol. Endocrinol. (UNITED STATES) 13 (4): 555-65. ISSN 0888-8809. PMID 10194762.
- ↑ Dinerstein-Cali, H; Ferrag F, Kayser C, Kelly P A, Postel-Vinay M (Aug. de 2000). «Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins». Mol. Cell. Endocrinol. (IRELAND) 166 (2): 89-99. ISSN 0303-7207. PMID 10996427.
- ↑ a b Sanz-Moreno, Victoria; Casar Berta, Crespo Piero (mayo. de 2003). «p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels». Mol. Cell. Biol. (United States) 23 (9): 3079-90. ISSN 0270-7306. PMID 12697810.
- ↑ Tanoue, T; Maeda R; Adachi M; Nishida E (Feb. de 2001). «Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions». EMBO J. (England) 20 (3): 466-79. ISSN 0261-4189. PMID 11157753. doi:10.1093/emboj/20.3.466.
- ↑ Purcell, Nicole H; Darwis Dina, Bueno Orlando F, Müller Judith M, Schüle Roland, Molkentin Jeffery D (Feb. de 2004). «Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes». Mol. Cell. Biol. (United States) 24 (3): 1081-95. ISSN 0270-7306. PMID 14729955.
- ↑ Zhang, Shengliang; Fukushi Masaya, Hashimoto Shinichi, Gao Chongfeng, Huang Lin, Fukuyo Yayoi, Nakajima Takuma, Amagasa Teruo, Enomoto Shoji, Koike Katsuro, Miura Osamu, Yamamoto Naoki, Tsuchida Nobuo (Sep. de 2002). «A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling». Biochem. Biophys. Res. Commun. (United States) 297 (1): 17-23. ISSN 0006-291X. PMID 12220502.
- ↑ a b Zhao, Y; Bjorbaek C, Moller D E (Nov. de 1996). «Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases». J. Biol. Chem. (UNITED STATES) 271 (47): 29773-9. ISSN 0021-9258. PMID 8939914.
- ↑ a b Smith, J A; Poteet-Smith C E, Malarkey K, Sturgill T W (Jan. de 1999). «Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo». J. Biol. Chem. (UNITED STATES) 274 (5): 2893-8. ISSN 0021-9258. PMID 9915826.
- ↑ a b Roux, Philippe P; Richards Stephanie A, Blenis John (Jul. de 2003). «Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity». Mol. Cell. Biol. (United States) 23 (14): 4796-804. ISSN 0270-7306. PMID 12832467.
- ↑ Robinson, Fred L; Whitehurst Angelique W, Raman Malavika, Cobb Melanie H (Apr. de 2002). «Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1». J. Biol. Chem. (United States) 277 (17): 14844-52. ISSN 0021-9258. PMID 11823456. doi:10.1074/jbc.M107776200.
- ↑ a b Yeung, K; Janosch P, McFerran B, Rose D W, Mischak H, Sedivy J M, Kolch W (mayo. de 2000). «Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein». Mol. Cell. Biol. (UNITED STATES) 20 (9): 3079-85. ISSN 0270-7306. PMID 10757792.
- ↑ Wunderlich, W; Fialka I, Teis D, Alpi A, Pfeifer A, Parton R G, Lottspeich F, Huber L A (Feb. de 2001). «A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment». J. Cell Biol. (United States) 152 (4): 765-76. ISSN 0021-9525. PMID 11266467.
- ↑ Xu Be; Stippec S, Robinson F L, Cobb M H (Jul. de 2001). «Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking». J. Biol. Chem. (United States) 276 (28): 26509-15. ISSN 0021-9258. PMID 11352917. doi:10.1074/jbc.M102769200.
- ↑ Chen, Z; Cobb M H (mayo. de 2001). «Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2». J. Biol. Chem. (United States) 276 (19): 16070-5. ISSN 0021-9258. PMID 11279118. doi:10.1074/jbc.M100681200.
- ↑ a b c Eblen, Scott T; Kumar N Vinay, Shah Kavita, Henderson Michelle J, Watts Colin K W, Shokat Kevan M, Weber Michael J (Apr. de 2003). «Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs». J. Biol. Chem. (United States) 278 (17): 14926-35. ISSN 0021-9258. PMID 12594221. doi:10.1074/jbc.M300485200.
- ↑ Pettiford, S M; Herbst R (Feb. de 2000). «The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP». Oncogene (ENGLAND) 19 (7): 858-69. ISSN 0950-9232. PMID 10702794. doi:10.1038/sj.onc.1203408.
- ↑ Saxena, M; Williams S; Brockdorff J; Gilman J; Mustelin T (Apr. de 1999). «Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)». J. Biol. Chem. (UNITED STATES) 274 (17): 11693-700. ISSN 0021-9258. PMID 10206983.
- ↑ a b Waskiewicz, A J; Flynn A, Proud C G, Cooper J A (Apr. de 1997). «Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2». EMBO J. (ENGLAND) 16 (8): 1909-20. ISSN 0261-4189. PMID 9155017. doi:10.1093/emboj/16.8.1909.
- ↑ Voong, Lilien N; Slater Allison R, Kratovac Sebila, Cressman Drew E (Apr. de 2008). «Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator». J. Biol. Chem. (United States) 283 (14): 9031-9. ISSN 0021-9258. PMID 18245089. doi:10.1074/jbc.M706487200.
- ↑ Maekawa, Momoko; Nishida Eisuke, Tanoue Takuji (Oct. de 2002). «Identification of the Anti-proliferative protein Tob as a MAPK substrate». J. Biol. Chem. (United States) 277 (40): 37783-7. ISSN 0021-9258. PMID 12151396. doi:10.1074/jbc.M204506200.
- ↑ Aoyama, K; Nagata M; Oshima K; Matsuda T; Aoki N (Jul. de 2001). «Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain». J. Biol. Chem. (United States) 276 (29): 27575-83. ISSN 0021-9258. PMID 11346645. doi:10.1074/jbc.M100408200.
- ↑ Jin, Zhaohui; Gao Fengqin, Flagg Tammy, Deng Xingming (Sep. de 2004). «Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation». J. Biol. Chem. (United States) 279 (38): 40209-19. ISSN 0021-9258. PMID 15210690. doi:10.1074/jbc.M404056200.
- ↑ Gupta, S; Davis R J (Oct. de 1994). «MAP kinase binds to the NH2-terminal activation domain of c-Myc». FEBS Lett. (NETHERLANDS) 353 (3): 281-5. ISSN 0014-5793. PMID 7957875.
- ↑ Tournier, C; Whitmarsh A J, Cavanagh J, Barrett T, Davis R J (Jul. de 1997). «Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase». Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 94 (14): 7337-42. ISSN 0027-8424. PMID 9207092.
- ↑ Díaz-Rodríguez, Elena; Montero Juan Carlos, Esparís-Ogando Azucena, Yuste Laura, Pandiella Atanasio (Jun. de 2002). «Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding». Mol. Biol. Cell (United States) 13 (6): 2031-44. ISSN 1059-1524. PMID 12058067. doi:10.1091/mbc.01-11-0561.
- ↑ Mitsushima, Masaru; Suwa Akira, Amachi Teruo, Ueda Kazumitsu, Kioka Noriyuki (Aug. de 2004). «Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin». J. Biol. Chem. (United States) 279 (33): 34570-7. ISSN 0021-9258. PMID 15184391. doi:10.1074/jbc.M402304200.
- ↑ Cano, E; Hazzalin C A, Kardalinou E, Buckle R S, Mahadevan L C (Nov. de 1995). «Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction». J. Cell. Sci. (ENGLAND). 108 ( Pt 11): 3599-609. ISSN 0021-9533. PMID 8586671.
- ↑ Song, J S; Gomez J, Stancato L F, Rivera J (Oct. de 1996). «Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex». J. Biol. Chem. (UNITED STATES) 271 (43): 26962-70. ISSN 0021-9258. PMID 8900182.
- ↑ Lee, I S; Liu Y; Narazaki M; Hibi M; Kishimoto T; Taga T (Jan. de 1997). «Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6». FEBS Lett. (NETHERLANDS) 401 (2-3): 133-7. ISSN 0014-5793. PMID 9013873.
- ↑ Zhou, X; Richon V M, Wang A H, Yang X J, Rifkind R A, Marks P A (Dec. de 2000). «Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras». Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (26): 14329-33. ISSN 0027-8424. PMID 11114188. doi:10.1073/pnas.250494697.
- ↑ Scheper, Gert C; Parra Josep L, Wilson Mary, Van Kollenburg Barbara, Vertegaal Alfred C O, Han Ze-Guang, Proud Christopher G (Aug. de 2003). «The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization». Mol. Cell. Biol. (United States) 23 (16): 5692-705. ISSN 0270-7306. PMID 12897141.
- ↑ Karandikar, M; Xu S, Cobb M H (Dec. de 2000). «MEKK1 binds raf-1 and the ERK2 cascade components». J. Biol. Chem. (UNITED STATES) 275 (51): 40120-7. ISSN 0021-9258. PMID 10969079. doi:10.1074/jbc.M005926200.